PICK UP ON THE STOOL

1.) Two functions are shown: $f(x) = 1/2(2)^x$

$$g(x) = 5x + 2$$

What is the largest integer value of x such that $f(x) \le g(x)$?

2.) The width of a rectangle is 3/4 its length. The perimeter of the rectangle is 420 ft. What is the length, in feet, of the rectangle?

Exponential Growth

Exponential Growth

Occurs when a quantity Increases by the same rate over time.

$$y = a(1 + r)^t$$

Examples:

- 1. The original value of an investment is \$1400 and the value increases by 9% each year. Write an exponential growth function to model this situation. Then, find the value of the investment after

Step 1: Identify a, r, and t.

A =
$$\$1400$$

R (percent to decimal) = 970000

Step 2: Plug values into formula $y=a(1+r)^t$.

$$y = 1400 (1.09)^{2}$$

\$12,072.31

Step 3: Solve for y.

The cost of tuition at a college is \$12,000 and is increasing at a rate o 6% each year. Write an exponential growth function to model this situation. Then, find the tuition cost after 4 years.

Step 1: Identify a, r, and t.

A =
$$\$12,000$$

R (percent to decimal) = 62 \rightarrow 0.06
T = 4

Step 2: Plug values into formula $y=a(1+r)^t$.

Step 3: Solve for y.

3. The number of student athletes at a local high school is 300 and is increasing at a rate of 8% per year. Write an exponential growth function to model this situation. Then, find the number of student athletes after 5 years.

y= 300(1.08)⁵
440.8
440 athletes

Real World Model

The cost to attend the University of North Carolina at Chapel Hill increases on average 6.5% per year.

Costs from 2008 - 2018

Exponential Decay

Exponential Decay

Occurs when a quantity decreases by the same rate over time. $a = initial \ Value$ $y = a(1-r)^{t}$ r = rcte t = time

Key Words: Decreasing, depreciates, loses

less than 1

7. The population of a town is decreasing at a rate of 1% per year. In 2000 there were 1300 people. Write an exponential decay function to model this situation. Then, find the population in 2008.

Step 1: Identify a, r, and t.

R (percents to decimals) = $\frac{1}{2}$

$$T = 8$$

Step 2: Plug values into formula-- $y=a(1 - r)^t$

y= 1300 (1-0.01)8

Step 3: Solve for y.

8. The value of a car is \$18,000 and depreciating at a rate of 12% per year. Write an exponential decay function to model this situation. Then, find the value of the car after 10 years.

Step 1: Identify a, r, and t.

A =
$$\$18,000$$

R (percents to decimals) = 0.12
T = 10

Step 2: Plug values into formula-- y=a(1 - r)^t

Step 3: Solve for y

9. A farmer buys a tractor for \$50,000. If the tractor depreciates 10% per year, write an exponential decay function to find the value of the tractor in 7 years.

 $y = 50,000(0.9)^{7}$ \$ 23,914.85