Unit 3: Geometry Unit STUDY GUIDE

Directions: Answer each question completely. Show ALL work in the space provided. If necessary, you may attach a separate sheet of paper.

- 1.) Given a triangle with vertices:
- (0,3), (0,-3) and (4,-3), what is the approximate perimeter? (Round to the nearest hundredth)

 $4^2 + 6^2 = c^2$ 16+36=c2

x-axis $C^{2} = 52$ C=V52

4+6+552

3.) Write the equation of a line parallel to y = -4x + 5 that passes through the point (-8,11).

$$y-11 = -4(x+8)$$

 $y-11 = -4x-32$
 $+11$
 $y = -4x-21$

2.) Given the points:

(11,4) and (17,-6)

A. Determine the midpoint.

$$\left(\frac{11+17}{2}, \frac{4+-6}{2}\right)$$

B. Determine the distance.

V(17-11)2+(-6-4)2 V(6)2 + (-10)2

V36+100 = V136

4.) What equation represents the line that is **perpendicular** to the graph of x - 3y = 21and passes through the point (12,5). $y=\frac{1}{2}x-7$

A. 3x - y = 41

5.) A triangle has vertices at:A(-2,1), B(3,3) and C(3,-5). Using the coordinate grid, graph the triangle and determine the lengths of all three sides.

x-axis C=14

AB \\41 BC_8

Circle the classification that best describes the triangle:

- A. Scalene
- B. Equilateral
- C. Isosceles

	hat is the midpoint of the lor	
triangi	e with vertices (2, 5), (4, 5), (and (4, 7)?
	•• • • • • • • • • • • • • • • • • • • •	_
AB	d= (4-2)2+(5-5)2=	J22=J4=2
	d= J(4-4)2+(7-5)2 = >	$\sqrt{2^2} = \sqrt{4} = 2$
AC.	0 = V(4-4)-+(7-5)" -	, ,
	d=V(4-2)2+(7-5)2=V	22-22=1444
AC	み= V(4-2)2+ (7-5)= V	272
' -		=18
		V O
		7
		7 10ngest side
* Nich	lpoint of AC	longest
IALIC	iponiti o i rio	side
100	W = . ¬	_
	벌, <u>5박</u>)	
	21-21	
-		
	2 1	
	7,0)\	18
: L 🛰	· · · · · · · · · · · · · · · · ·	78 .

- 12.) A line segment has endpoints I(9,7) and L(11,5). The point K is the midpoint of line segment JL.
 - A.) What is the midpoint? (K)

(10, 6)

B.) What is an equation of a line perpendicular to JL and passing through K?

- 13.) What is the most accurate way to classify a quadrilateral with two pairs of parallel sides?
- A. Trapezoid, 1 Pair //

C. Rhombus Has to have

4≥ sides D. Parallelogram

B. Rectangle

Has to have

2 pairs = sides

4 L'S

14.) Drew and Joseph live in the same neighborhood. On a coordinate grid, Drew's home is at (1, 1) and Joseph's home is at (9, -3).

How many yards apart are Drew's and Joseph's homes? Round your answer to the nearest hundredth.

15.) Calculate the area of the rectangle with vertices at:

DRAW A SKETCH TO HELP VISUALIZE (-7,5), (4,6), (4,-3) and (-7,-2)

(-7.5)
$$\frac{1}{1}$$
 (4.6) Side $\frac{1}{1}$ $\frac{1}{1$

V(11)2+(1)5

16.) A construction company is adding a new road in a small town. This road must run perpendicular to the existing road, and must pass through the coordinate (4,8) on a map. If the equation for the existing

road is y = 5x + 8 what will the equation for the new road be?

17.) Place one option from each of the lists below into its corresponding box to create an equation of the line that passes through the point (2,-7) and is perpendicular to $y = -\frac{1}{5}x + 9$ $ \frac{1}{-\frac{1}{5}x} \frac{2}{+} \frac{3}{-3} $ $ y = \frac{1}{5}x \frac{2}{-1} \frac{3}{17} $ $ y = \frac{1}{5}x \frac{2}{17} $ $ y = \frac{3}{5}x \frac{3}{17} $ $ y = \frac{1}{5}x \frac{2}{17} $ $ y = \frac{3}{17} $ $ y = \frac{1}{5}x \frac{3}{17} $	18.) A line, $y = mx + b$, passes through the point $(2, 11)$ and is parallel to $y = 3x + 18$. What is the value of b? M = 3 $y - 11 = 3(x - 2)$ $y - 11 = 3x - 4$ $+ 11$ $y = 3x + 5$ $b = 5$		
19.) Simplify the following radicals.			
A. $\sqrt{98}$ $\sqrt{49} \cdot \sqrt{2}$ $\sqrt{16} \cdot \sqrt{2}$ $\sqrt{16} \cdot \sqrt{2}$ $\sqrt{16} \cdot \sqrt{2}$	C. $\sqrt{27}$ $\sqrt{9} \cdot \sqrt{3}$ $3\sqrt{3}$		
19.) A rectangle is a quadrilateral with two pairs of parallel congruent of that are perpendicular. Quadrilateral <i>ABCD</i> as vertices $A(1, 4)$, $B(3, 1)$ slopes and lengths of sides to determine if this quadrilateral is a rectan y-axis AD 3BC $4^2+5^2=C^2$	$AD \rightarrow m = 4/5$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AB $\rightarrow m = -3/2$ CB $\rightarrow m = +15$ DC $\rightarrow m = -3/2$		
$\frac{2}{12}$ $\frac{2}{12}$ $\frac{1}{12}$	2 sets of // sides		
	But not any 1 sides		
Quadrilateral ABCD is not a rectangle because: 1.) No sets of perpendicular sides	(NO sets of opposite reciprocal slopes)		
2.) to give the needed 90° right angles			
3.)			